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Department of Mathematics, The University, Dundee

(Received 4 October 1968)

—
§ > CONTENTS
2 : 1. INTRODUCTION 2 11. THE CONTRIBUTION FROM INFINITY 25
- .
O 2. THE KERNEL FUNCTIONS 3 12. DISCONTINUITIES IN DERIVATIVES 29
I O 3. THE GENERALIZED TRANSFORMS 8
4 13. CONTRIBUTION FROM THE ORIGIN 30
4, SOME PROPERTIES OF THE
Eué: TRANSFORMS 12 14. CRITICAL POINT NOT AT THE
U8 ORIGIN 32
= 5. THE STRUCTURE OF A GENERALIZED
35 L TRANSFORM 14 15. APPROXIMATION TO THE KERNEL
0
85: 6. LimrTs 15 FUNCTION 58
Z
o
E§ 7. INVERSION THEOREMS 16 16. EXAMPLES 35
= ‘
= 8. THE ANALOGUE OF THE 17. AN EXAMPLE OF INVERSION 38
RIEMANN—-LEBESGUE LEMMA 19
APPENDIX A 40
9. PriMITIVES 22
AprpPENDIX B 42

10. SEPARATION OF THE CRITICAL
POINTS 24 REFERENCES 43

Certain properties of generalized transforms of the type

fw g(x) h(a, x) dx
0

are derived when g is a generalized function in the terminology of Lighthill (1958) and Jones (19665).
The kernel function /% is assumed to be smooth and of sufficiently slow growth at infinity for the general-
ized transform to exist for any generalized function g. Nevertheless, the class of kernel functions is wide
and includes functions such as ei**' and the Bessel function J,,(«x). Theorems concerning the derivative
and the limit (in the generalized sense) of the generalized transform are established. The problem of
the inversion of generalized transforms is also discussed.

The analogue of the Riemann-Lebesgue lemma for generalized transforms is obtained when g is
a conventional function and the restrictions on % are relaxed so that it need only be the derivative of
a function with suitable properties.

The asymptotic behaviour as & - + 0 of the generalized transform is examined under the condition
that g is infinitely differentiable (in the ordinary sense) at all but a finite number of points. It is shown
that the main contribution to the asymptotic development comes from intervals near these points and
the point at infinity. Criteria are provided which demonstrate that in many important practical cases
the contribution from the point at infinity is essentially exponentially small and therefore negligible.
The contributions from the other critical points are determined under a variety of circumstances. In all
cases the aim has been to consider conditions which are likely to be of practical value, to be capable of
relatively straightforward verification and yet yield theorems of reasonable utility and wide applicability.

Some illustrations of the applications of the theorems are given; they include Bessel functions,
Laplace transforms and the Hankel transform.
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2 D. S. JONES

1. INTRODUGTION

In an earlier paper (Jones19664) the author considered the asymptotic behaviour of Fourier
integrals and the method of stationary phase, deriving some general theorems of wide applica-
bility. The aim of the present paper is to provide corresponding theorems for integrands of a more
extended class. Although the permitted class investigated is considerably more extensive than in
the earlier paper, it has been found possible to obtain very general theorems involving only
relatively simple assumptions. However, no attempt has been made to establish the theorems
under the weakest possible conditions. Only circumstances which are likely to occur frequently in
practice have been taken into account.

The primary objective of the work is the derivation of asymptotic formulae for integrals of the

type @
P fo g(x) (e, x) dx

as o >+ 0. Here g is a generalized function but the kernel function /4 is subject to certain restric-
tions, which will be stated later, to ensure that the integral has a meaning as a generalized
function of a.. (The terminology is that of Lighthill (1958) and Jones (1966 4).) Such integrals may
be regarded as generalized transforms of g. Although the main concern is with asymptotic
behaviour it has been found convenient to develop some useful theorems dealing with the
transform of g defined by the integral above. One of the most valuable attributes of a transform is
the existence of an inversion theorem in suitable circumstances. However, in order to prevent
undue restriction on the integrand, there is no insistence that an inversion theorem should be
available, although there is some discussion of the conditions under which inversion is likely to
be valid in § 7 (see also §17).

Section 2 is concerned with specifying the conditions which are to be imposed on % and the
properties which result. In addition, two important subclasses are introduced because they cover
kernels of frequent occurrence and can lead to more precise estimates of the asymptotic behaviour.
It is shown in §3 that, for the given class of %, the generalized transform of any generalized
function can be defined and that this definition is consistent with earlier definitions of narrower
application. Theorems about the derivative of a generalized transform and the effect of a linear
change of variable are obtained in § 4. I'tis then possible to determine the structure of a generalized
transform—this is carried out in §5. The generalized limit is discussed in § 6 and then some
inversion properties are derived in § 7.

In the derivation of the asymptotic behaviour of the generalized transform for large o it is
found helpful to have available theorems which are analogous to the Riemann-Lebesgue lemma.
These theorems are derived in § 8, some attention being paid to an important class of functions
for which better estimates can be obtained of the asymptotic behaviour of the integral than in the
Riemann-Lebesgue lemma. Section 9 is concerned with deriving simple tests of whether or not
a kernel function complies with the conditions required by the theory of § 8.

The class of generalized functions under consideration in § 10 is limited to those likely to be of
most practical value. These generalized functions have a finite number of ‘ singularities’ or critical
points. Itis shownin § 10that the main contribution to the asymptotic behaviour of the generalized
transform comes from the critical points. The critical point at infinity is examined in detail in §11
and criteria are given under which the contribution is negligible. The effects of a discontinuity in
a derivative are obtained in § 12, whereas the contribution from the critical point at the origin is
derived under more general conditions in § 13. It is demonstrated in § 14 how the theory for a
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GENERALIZED TRANSFORMS 3

critical point which is at neither infinity nor the origin can be subsumed under the preceding
theory. The problem of approximating the kernel function is investigated in § 15 and some useful
theorems derived.

Sections 16 and 17 give some illustrations of the theory that has been developed ; § 16 deals with
asymptotic behaviour and § 17 with inversion of the Hankel transform.

Some results are given in appendices A and B; reference to equations there is indicated by the
addition of the letter A or B respectively.

2. THE KERNEL FUNCTIONS

Integrals of the type
f g(x) h(o, %) dx

0

are of frequent occurrence in applied mathematics, especially when transform methods are
employed. Usually these integrals cannot be evaluated exactly and it is necessary to resort to
asymptotic techniques. In order that these techniques shall be of reasonably wide applicability itis
desirable to consider the integral in a generalized sense. If g is a generalized function, some
limitation will have to be placed on % to ensure that the integral exists, even in a generalized
sense. This section is concerned with laying down suitable restriction on 4, while still permitting
a wide variety of %, and developing properties that will be useful subsequently.

Throughout the paper it will be assumed that « and x are real; indeed, in most of the analysis
they are non-negative.

DeriNiTION 1. We write h € A+ when, on o = 0 and x > 0, h is infinitely differentiable (in the ordinary
sense) with respect to o and x,

oS h
ox" 0o®

< Cps(1+a?)rs (1 +x2)0rs (. > 0, x > 0) (1)

Jorr,s =0,1,2, ... and there exist u,, v, such that

3rur 6qu7 2\ Mg+a,7 2\ M, P,
g = 5] < Cpr(1 +a?)Mgtarr (1 4 x2)Mar[oPer (o0 > 0, x = 0), (2)
v, 0%, 2\ N, 2) Ng-+atat [ 5@
2o = |G < Cpp(1 4+ a®)Nar (1 4 x2) Nt [x9r - (a0 > 0, x > 0), (3)

Jorr=1,2,...and ¢ =0,1,2,.... The real numbers a,, a, satisfy 0 < ay,ay < %, the real numbers M,
and N, are independent of r and
o p f Pq,'r+1—qu = 1: Qq,r+1—qu = 1. (4)

There are clearly connexions between some of the exponents in (1) to (3), e.g. M, = b
(¢ = 7). If uy and v, are identified with £ it follows that

0,q—r

My = ago = Noo, Moo = bog = Ny,
when Py, and @y, are zero. It will be remarked that considerable freedom is attached to the choice
of Qpsy brs: Mq: qu qua .qu, ]Vqr and qu'

In saying that % is differentiable at x = 0, we require only that the right derivative exists there;
a similar convention is understood at & = 0.

1-2
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4 D. S. JONES

The symbol C,, is used generically here, and subsequently, to indicate some finite non-negative
number independent of o and x; it does not necessarily represent the same value at each
occurrence.

A simple example of a function in #* is el*®. In this case u, = €*%/(ia)" and v, = €l**/(ix)",
which obviously satisfy the conditions imposed in definition 1. Another simple example is

}l(OL, x) = Ci“xz; here w0 [Poo w eiax?
= (=) et dgdey ... de, =
= [ et o =

The conditions on v, are obviously met. As for #,, induction, with the use of

0
Uy = _f U, dt,

x

shows that «, behaves like a constant multiple of e1%#*/(ax)” for large x and is O(1/a#") for small .
The required properties follow immediately.
One attribute of £+ that will be important subsequently is contained in

TuEOREM 1. If x(x) is infinitely differentiable (in the ordinary sense) on x > 0, if
[X0()] < C(1+x3)Pr (x> 0) ()
Jorr=0,1,2,..., and if he H+ then x(x) h(a, x) e 7.
Proof. By Leibniz’s theorem

or+3(h)
ox" 0ol®

,
<C ¥ (1+a?)%-ps(1+x2)br—p,stPp
p=0

(D) ﬁws*pli
X 5arD g

<C}T]
=0

from (1) and (5). Evidently % satisfies an inequality of the form (1), though not necessarily with
the same a,, and b,,. It remains to demonstrate the existence of functions satisfying (2) and (3).
Let U, be defined forr =1, 2, ..., by

"

U=+ y sy [ ) g (=t axo (®

when a > 0. Then

oU, _
ox

(f:;;! f “ula, D) o (=020} de

= 1,(3,0) Bo(s) +x e £ M P qa sy (7)

ou,
1—7)y' -
(L=r) X't +x 7"+

after an integration by parts. Here F,_, is a polynomial of degree r — 2 in x whose coeflicients do
not involve c.

Apart from the first term (7) is the same as (6) with 7 replaced by r — 1 except that u, is replaced
by ou,/0x. Therefore, there is no difficulty in seeing that

U, o,
axr - X(X) axr - X(x) }l(“:x)'

Also, from (6), (5) and (2),

au,|

(1 + (xz) My+azr
ot a

xX
C ’*77157— {(1 + x2)P0+Mqr +f0 (1 =+ tZ) Mgy

Fe=xella @

From (8) and (5) it is evident that an inequality of the type (2) is satisfied; the main difference
is that M, is replaced by sup (M, + Po, My, + P, + %, ..., M), + I, + %7).
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GENERALIZED TRANSFORMS 5

Correspondingly, ¥, = xv, is such that ¢V, /da" = xh and

(1 + X2) Nptaer+Pg—m

mer

<C 3 (1+0a2)Vm

ox? m=0

=

on x > 0. This is the same as (3) but with N,,, Q,,, N, replaced by

sup Nmr’ sup er) sup (Nm +F, —m %er + % sup Q'nr) )
m m m n

respectively, with m, n running through 0, 1, ..., g. Thus ¥, has the same properties as v, and the
proof of the theorem is complete.

The interchange of « and « in the above proof leads to the conclusion that y(«) k(a, x) € £+
but this fact will not be needed subsequently.

It is also possible to multiply % by a function of & and x without leaving #+. One particular
case of interest is given by '

THEOREM 2. If h e S+ and if

oS
0x" dot®

< ener(14a?)%s(1+a%)"% (g > 0)

Jorr,s =0,1,2, ..., then hA e H#+.
Proof. Obviously kA complies with (1). Define

-1 © v )
U, = mfx h(o, t) Ala, t) (x—t)r—1dt.

Then ¢"U,/ox" = kA and

o]

[ []r[ < C(]_ + “2)aoo+a60J\ (]_ + t2)b00+b60(t _ x)7‘~1 e—Coo aédt

x
< C( 1+ 062) QAoot+A00 e—Coo & f ° {1 + ( t— x) 2}b00+b30 =1 e—Coo atl dz
0

(1 + 0u2) @0 +boo+abo+boo
(Coq )" 2002550

<C 1 + x2)boot+Doo =000 22,
Similar considerations apply to the derivatives of U, and also to ¥}, defined analogously. Hence
the theorem is proved. :

There are two subclasses of £+ which will prove to be valuable in later sections. The first of
these is defined as follows

DEFINITION 2. Let j be infinitely differentiable (in the ordinary sense) with respect to o and x on o > 0,

x = 0 and satisfy o

Ll < (1L aa (030, %3 0) (9)

Jorrys =0,1,2, ..., where 0 < ¢1,¢, < % and the numbers a,, by are independent of s, r respectively. Then,

if b is the sum of a finite number of terms of the type j(o, x) €~1%%% where b is real and non-zero, we write

heHt. ‘
Some examples of functions which are in #5 are

cosox, (l+oa2+a2)~le-ior,  (1+ad+a?)beer, cos{(1+a+x)d+ax}.
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6 D. S. JONES

We wish to show that z e #7 implies that £ e #+. Clearly it will be sufficient to demonstrate
this for a term of the type j e71%; the result for the sum of a finite number of such terms is then
immediate.

On account of (9), (1) is satisfied with

Gy = SUP {eym+ b, +3(r=m)}, by = sup {eun+a,,+ (s —n)}

as m runs through 0, 1, ..., 7 and # runs through 0, 1, ..., s. It remains to determine %, and v,.
When o > 0, let

w=(= )](i%) eTi (r_l L f . Z_b;)t gyl ) (e=0r . (19

Then it is easy to see, after an integration by parts, that

aur/ax = ur—1+B—2<x)’ (11)
where P,_, is a polynomial of degree r — 2 in x. Since du,/ox = j(e, x) e~1%%® it follows that

o foxr = (o, ) e

Furthermore, it is plain from (9) and (10) that

02 , .
’a;f < Cgp(1 + a®)Miterr (1 4 x%) Mir [t (12)
where My = ¥q+sup (bg, by, ..., b,),

Mér = %9+SUP (a0>a1+%’ '">ar+%r)'

Consequently, an inequality of the type (2) is met.
By interchanging the roles of « and x in the analysis a v, is obtained which satisfies (3). There-
fore, we have demonstrated

Turorem 3. If he i then he S+,
An immediate deduction from theorem 1 is that, yk e #+ if ke s#F, but more is true. For,
from (5) and (9), orts

ox" 0ot

()| < Cal1+ ad)nritn(1 + 3)esss (13

where a, = sup (ay+ B, a,+ F,_y, ..., a,+ Py). Inequality (13) is of the same form as (9) and so we
can assert

Turorewm 4. If he Ay and x satisfies the condition of theorem 1, then x(x) h(a, x) € #7".
The second subclass of s+ that is of interest stems from

DerINITION 3. Let k(x) be infinitely differentiable (in the ordinary sense) on x > 0 and satisfy
|k0(x)| < C(1+x2)N-0" (x > 0), (14)

where N > 0 and & > 0. Then, if h is the sum of a finite number of terms of the type k(ox) €102 where b is
real and non-zero, we write h e H'F .
Typical examples of functions in 5" are

el*®,  cosax, Jy(ax), sinaxln(l+ax), J,(ax)/(ax),

ei(aa:+(owc+1)§}’ (14 a2 xz)% elbaz,
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GENERALIZED TRANSFORMS 7

The space also includes e=** since e~*+i2 satisfies (14) and therefore contains functions which
cannot be regarded as oscillatory. The space could be restricted to functions, that could be called
oscillatory, by replacing (14) by

()| < (1422) 2[R0 (). (15)

Such oscillatory functions come within the scope of (14) and, indeed, all the examples in the
first sentence of the paragraph can be described as oscillatory in this sense. However, e=*% would
be excluded by (15).

There are two conclusions which can be drawn at once from definition 3 which, for future
reference, will be stated as lemmas without proof.

Lemma 1. If |k0(x)| < C,e=%®(a, > 0, x > 0) forr = 0,1, ... then k(ax) e~1v*® ¢ #5.

Lemma 2. If h e K5 then K™ (ox) € HF (n a non-negative integer) with the same values of N and é.

Before proceeding to show that 4 € 5 implies that 4 € #+ we note that £ need not lie in 5.
For consider A(ax) = ei*®/(14+ax); this satisfies definition 3 with k(x) = (1+x)~1. But
0"k(ox) [0x" does not comply with (9) for any ¢ less than }, as can be seen by examining the
behaviour on x = 1/a. Therefore £(xx) cannot be identified with j(e, x).

On the other hand, there are functions such as a2x? ¢i** which are in 55 and 5. Obviously
there are functions in 7 which are not of the form #(ax). Hence 5 and 3 are subclasses of
'+ which intersect but neither is contained in the other. However, #7 and 45 do not exhaust
A+ because €1%*® is in #+ but not in either S#{ or 5.

To show that 4 € #* follows from % € 5" write £, = k and then define recursively, on x > 0,

k(s 1)

k(%) K (%) } .
_ _ a—ibx 7r+1 r+1 —ibt
h_(x) = —e { T (ib)? .t 1b L J K2, 14 (2) ds, (16)

where k_,.(x) = h_,(x) el*® for r = 1,2, .... The integer s is chosen so that ds > N + 1; the infinite
integral in (16) then converges absolutely, at any rate when r = 1. It will now be proved by
induction that this is true for general values of r.

Assume that
|FD1(x)| < Cy(1 +22)N—02 (17)

when x > 0; this certainly holds when » = 1 by definition 3. The inequality (17) implies that the
integral in (16) converges absolutely and so

, k(% KT (x elb® \
k(%) = — ;Lbl( )— (1;)'31(1)— Ty lf k) 1(2) e~iotde. (18)

By combining (16) and (18) we obtain

R_p(x) —1bk_(%) = k_p14(%). (19)

Also, an integration by parts (remembering that £} ; vanishes at infinity) enables (18) to be
written as , . w

k. (x) = _Koral) —k(f)rfl(x) - ?lbx kS (¢) e~totde.

o ib (i6)s  (ib)s), "

This formula is the same as that for £_, except that £, ; occurs in place of £_,,,. Hence

Ko (x) = KD a(x) _k<s L)y elbe‘ o g

-r ib
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8 D. S. JONES

It follows from (17) that
[£D(x)| < Cy(1+ 22N 4C\, f (14 2) N6t dy
T

fee]
< CyL4+a2) N 904Gy (1 44%) 0 f (1+2)N-3s dy,
0
The integral is finite on account of the choice of s and so, since N = 0,
[K2. ()] < Cy(1 447N, (20)

This inequality is the same as (17) with 7 replaced by 7+ 1. But (17) is valid for » = 1 and so, by
induction, holds for cvery positive integer r. Consequently, the integral in (16) convergces
absolutely and %_, is well defined.

The preceding results for £_, can be employed to give properties of £_,. For example, (20)

implics that |KD,(x)| < C,(1+x2)¥, (21)

whereas (19) shows that ho(x) =k pq(x), H_y(x) = h(x). (22)
When o > 0, define u, by u, = A_,(ax)/a". Then, from (22),

ou,[0x = u, 4 (23)

and repeated application of this result gives ¢"u,/0x™ = h(ax). Moreover, by using (21), we find

%,

do?

< Cp(1 4+ a®x2)V (1 4 a?)deaetr (24)
which clearly satisfics (2).

Similarly, v, = A_,.(ax)/x" when x > 0 mccts the conditions of (3).

It has thus becn shown that /4 e #°+. It follows {rom theorem 1 that yx(x) 2(xx) e #+. Bearing
in mind that onc possible choicc for y is unity we therefore state

THEOREM 5. If he H5 and if ) satisfies the conditions of theorem 1, then x(x) h(ax) e A+,
An analogous theorem can be deduced from theorem 2.
It is also obvious from (20) and the relation A_,(x) ¢!** = k_,(x) that we have

LemMA 3. If he 5 then h_, e H's with the same N and 6.

3. THE GENERALIZED TRANSFORMS

The kernel functions £(a, x) introduced in the preceding scction provide a basis for defining
transforms of generalized functions which arc zero for x < 0. The class of such generalized
functions will be denoted by K. It is shown in appendix B that any gencralized function in K,
can bc defined by a regular scquence of good functions which vanish identically on x < 0.
(The terminology employed is that of Lighthill (1958) and Jones (19664).) A good function that
vanishes identically on x < 0 will be significd by the symbol y*+, the + sign being attached to
make it quite clear that a restricted class of good functions is involved.

Consider -
J v¥(x) k(e x) dx

0

when ke #+ and o > 0. The lower limit of integration could, if desired, be taken as — oo by
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GENERALIZED TRANSFORMS 9

ascribing finite values to 2 on x# < 0, since y* is identically zero on x < 0, but this procedure has
no special advantage for our purpose. Now

oo+ Pl d
| o) ax

< Co,(1 +oc2)“vqf: [ v+ ()] (14 x2)bor da

from (1). The integral on the right is finite because y* is good. Therefore, the integral on the left
exists and converges uniformly, with respect to o, for all finite & > 0. Consequently (see, for
example, Bartle (1964))

d%;lf: yH(x) h(a, x) dx = J:O Y+ (x) :Tq‘qh(a, x) d, (25)

a right derivative being employed at « = 0. Hence

f 0°° v+ (x) (o, %) dx

is infinitely differentiable (in the ordinary sense) on o > 0.
Next, observe thaton a > 0

P Pty 0% 0"P 0%,
ox™P OxP da? ~ dad ~ Ox"P Ol

for 0 < p < r. Therefore 97+, [0x? 02 differs from 0%, ,/0a? by at most a polynomial of degree
(r—p—1) in x. Taken in conjunction with (1), this shows that 9?+%,/0x? da? is bounded by some
power of x as x —co. Hence an integration by parts gives

oy,

© Pl ©
[ bty ar = [ 70 e

© orta—-1y
— e +7 -7
fo () ox™1 9ot dx

since y*+ vanishes at the origin and tends to zero faster than any inverse power of x as x — 0. Since
the derivatives of y* also have these properties, repeated integration by parts leads to

© o @ o,
[ ny an = (=) [ e e (26)
A use of (2) supplies
© 04 1+ 2\ My+ayr *oo
ocpfo vH(x) %h(a, x)dx| < C,, L—(x%qz_; fo [y (x)| (1 4 x2)Mar dx. (27)

on o > 0. The integral on the right of (27) is bounded and independent of «. For given p and ¢
r can be chosen so that 2M, + 2a,7—F,, +p < 0 since a; < % and F,, increases with r at least as
rapidly as 7 on account of (4). Such a choice of r ensures that the right-hand side of (27) tends to
Zero as o — 00.

This result, taken together with (25), implies that

f: y*+(x) ko, x) dx

and its derivatives with respect to « tend to zero faster than any inverse power of & as & —>c0.
Briefly, it may be said that the integral is good on & > 0.
2 Vol. 265. A.
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10 D. S. JONES

By interchanging the roles of « and #, and using v, instead of ,, a corresponding result for

f ® (@) by x) dat
0
is obtained. Hence we have proved

LemmA 4. If he S6+ and if y* is a good function which vanishes identically on x < 0, then
on y*+(x) h(a, x) dx
0

is good on o = 0 and f vH(a) h(e, x) da
0
is good on x > 0.

Let y*(«) be any good function which vanishes identically on o < 0. Let {y;} be a regular
sequence of good functions, each identically zero for » < 0, defining the generalized function

geK,. Then lemma 4 shows that w
i) e )

is a sequence of functions which are good on a > 0. Also

f: vH(e) f: vi(x) h(a,x) dyda = J:O Y (%) f: y+(a) h(at, x) do dac (28)

because the integral on the left is absolutely convergent by (1).
Let 74(x) be an infinitely differentiable function such that

Mo(x) =1 (x> 1)
=0 (x<d.

Then 7o(x) f :'y+(oc) B, ) dt

is a good function of x (including negative values) because, by lemma 4, the integral is good on
x > 0. Hence

tim 7m0 [+ bl ) s = [ 5) o) [y @b ) . (20)

n—>o0
Obviously foo y*(ee) h(ee, x) dx e L7(0, 1),
0

as defined in appendix A, for any finite 7. In addition, {[1 —7,(x)] 77 (x)} is a regular sequence
of good functions, zero for x < 0and x > 1, which defines the generalized function {1 — y,(x)} g(x).
Therefore an application of corollary A 1 gives

© 1 ©
tim [0 =na(s)} 78 (0 [ (e M) = =g (00) [ 4000 s ) dca
n—>0 0
(30)
the (possibly) singular integral on the right being interpreted in the sense of appendix A. The

upper limit of unity on the right-hand side can be replaced by oo since 1 —7, and its derivatives
vanish identically for x > 1. Then the combination of (28) to (30) leads to

lim 7+ oc)f Vo () k(et, x) dx dee —f x)f 7+ h(e, x) dee du. (31)

n—>0
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GENERALIZED TRANSFORMS 11

Hence { f : Vi (%) k(e %) dx}

is a sequence of functions which converges in the generalized sense on @ > 0, and so defines a
generalized function on & > 0. Accordingly, we have demonstrated

THEOREM 6. If h e '+ and if g € K, is defined by the regular sequence {y,'}, then

U‘:y;: (%) A(ex, x) dx}

defines a generalized function on o > O which will be denoted by

f : 2(x) h(a, x) dx.
It may happen that it can be shown that
lim [ () H@) [ 7t (3) b, 2) drda
exists, where 7 is any good function and H(e) is the Heaviside unit function which is unity for

« > 0 and zero for & < 0. In that case the sequence would define a generalized function without
restriction on «. When this occurs it will be signified by using the notation

H(a) f " g(x) ha, %) dx
for the generalized transform. ’

There are several points which stem from theorem 6 and the notation which it introduces.
First, emi** e #f and #’{ < H#* so that Fourier transforms of generalized functions in K, are
covered by the theorem. Since the defining sequence in theorem 6 is then the same as that used
in the standard theory of Fourier transforms (see, for example, Jones 19665), theorem 6 agrees
with the standard theory on & > 0 when g e K. This means that the known Fourier transforms
for generalized functions in K, can be used when £(a, x) = e—1*®,

Secondly, (31) can be expressed as

f: Yt (o) J: g(%) k(e %) dxda = f: g(x) f: y*(a) h(a, ) dov dx (32)

which is analogous to saying that the order of integration can be inverted.
Thirdly, the theorem is in accordance with the customary usage for ordinary functions.
Suppose, in fact, that fis an ordinary function, zero for x < 0, such that

f: (14 x%)0 | f(x)| dx < 0.

Then the argument leading to (28) can be reproduced with fin place of ;' ; thus (32) will hold
with f substituted for g. On the other hand, such an fis in X and can therefore be defined as a
generalized function by an appropriate {y;} (see, for example, appendix B); this would also
give (32) with foccupying the place of g. Consequently, whether fis thought of as an ordinary
function or as a generalized function consistent results are obtained.
Finally, if g(x) = 6™ (x) equation (A 4) indicates that
F 5 () fww(a) h(@, %) dovdy = () [c—ff; f”w(a) (e, %) doc]
0 0 X z=0

0

= ([T | gmhlenn) | d

z=0
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12 D. S. JONES

from (25). It follows from (32) that

[ ax = (=) [ b n)| (33)
ona > 0.

4. SOME PROPERTIES OF THE TRANSFORMS

In deriving certain theorems concerning the transforms it is frequently helpful to take a limit
in the generalized sense. To avoid constant repetition of the phrase ‘in the generalized sense’ the
limit in a generalized sense will be denoted by Lim, the notation lim being reserved for the limit
taken in the usual way. Thus Limy} =g (x> 0)
Nn—>00
is equivalent to the statement

[ce]

tim [ ") 7t () dr = () glo)

n—o J 0

for any good y* which is zero for x < 0.
Our first task is to obtain the generalized derivative of the generalized function defined in
theorem 6. Now, the generalized derivative can be defined on a > 0 by the sequence of derivatives

of the terms in -
([ 70 b 0],
0

In other words, the generalized derivative

de [ R L
ot ) g(x) h(a, x) dx = 71;1)15 (?1&71_[0 v (x) h(a, x) dx (34)
on a > 0. It follows from (25) that
. ® 01
+(x) ——
};Eol;l Y (%) o h{ee, x) dx

is a generalized function of @ on « > 0; it may be conveniently denoted by

© q
fo g(x) 5%71/2(0(, x) dx.
Combining this with (34) we obtain
TuroreM 7. If he #+ and g e K, then
dq © «© 04
E&Efo g(x) (e, x) dx = fo g(x) %Iz(a, x) dx
on o > 0.

The derivative on the left-hand side is a generalized one; that on the right is a partial derivative
in the conventional sense. The theorem is consistent with standard results for ordinary functions
which have the requisite properties.

Next, observe that systematic integration by parts gives

Lim [ v (x );—q/z(oc %) dx = Lim (- )fooy;[@(x)h(oc,x)dx
n—>c J 0 n—>w 0

because the behaviour of v, and its derivatives at the end-points ensures that there is no contri-
bution from the limits of integration. The right-hand side exists by theorem 6 and the limit
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GENERALIZED TRANSFORMS 13

process replaces y,f @ by g@. Therefore the left-hand side exists as a generalized function, which
may be denoted by

" g(x) 2 b, %) d
[} o) patto s,

The generalized limit of (26) then attaches a significance to

f 4" 0%, [0x2 dx
0

and we have

TueorEM 8. If he A+ and g e K, then

[ at0) g ey s = <—>qf°°g<q><x>h<oc,x> dx

3 U
r) _r
J‘ go(x 3x‘1

It must be remembered in the application of this theorem that g is the generalized derivative

ono > 0.

as calculated for K, and not as calculated on x > 0. Thus
f (ohjox)dx = —h(e,0) (> 0) (35)
0

because, in this case, g(x) = H(x) and so g'(x) = d(x) (not zero) in theorem 8 from which (35)
follows through (33).

A corresponding theorem involving v, can be derived. Because of (3) and the vanishing of
y+(x) at the origin faster than any power of x the product of y* and a derivative of v, can be
defined to be continuous at ¥ = 0. Hence

. ods [ Vg oe
le——f y;:(x) , dx = Lim 'yn( ) 7= h(a, x) dx

n—>c0 das 0 n—>c0 0x?

fg P h(a, x) dx

from the analysis above. The generalized function defined by the left-hand side merely replaces
v+ by g; this is consistent with theorem 7. Hence

THEOREM 9. If he H#+ and g € K, then

& o) L% dx = [ gx) 2 h(a,2)d
o | o) Grae = [ g0 e ) e
ona > 0.

The remainder of this section is concerned with linear changes of argument. Let o and 7 be

real numbers with o positive. Write
P Vi (0% +7) = 7,(%);

then y,, is a good function which vanishes identically for ¥ < —7/o and the sequence {y,,} defines
a generalized function gy(x) which is zero for x < —7/0. Also, the substitution oy 47 = x gives

Lim Yu(y) A(et, oy +7) dy = Lim ’ vi(x) h(a, x) dxfo
n—>0 J 0

n—w J —~7/l0

- f : 2(x) h(o, %) dx/or. (36)
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14 D. S. JONES
Hence, the left-hand side defines a generalized function and we agree to write
Lim [* p(0) baoy+r)dy = [ als) hasoy+7)dy (37)

which is not in conflict with earlier notation. Since
&o(y) = Limy,(y) = Limy; (oy +7) = g(oy +7)
(36) and (37) provide o n
THuEOREM 10. If he A+ and g, is zero for x < —7|0o, then

fw Go(x) h(at, ox+7) dx = J:;o 2 (x——T) ha ) d;x

—7lo o

on o > 0, when o and T are real with o > 0.
An obvious variation on this theorem is that, if g, is zero for ¥ > 7/0,

Tlo 0 .
|7 i) oy m—m) ax = f & (i—x) hoyx) & (38)
—w 0 ag g
when o > 0. Putting o = — ¢’ we obtain
—7/o’ 00 .
f 1), o'x 4 7) dx = — f @ (—) ho ) & (39)
—0 0 o o

when ¢’ < 0.

5, THE STRUCTURE OF A GENERALIZED TRANSFORM

A generalized transform has been defined for & > 0. The object of this section is to derive a
generalized function which is zero on a < 0 and which agrees with the transform on o > 0. In
the process something of the structure of a generalized transform will be elucidated.

When g e K, it is possible to write ¢ = f®™ for some finite 7, where the continuous function fis
zero on x < 0 and is bounded by a polynomial as x> co. It follows that fe K. Therefore, by

theorem 8, o w "
[7 atw ) dx = (= ") o )

0
on a > 0. Now

[ 0= g ey dn = [0 =l f0) £ s )

so that, on account of (1), the left-hand side is an ordinary function of & which is continuous on
o > 0 and which is bounded by a polynomial as a—>co. Hence, for any given non-negative
integer s, there is a continuous f;, bounded by a polynomial, such that

D= [7 -1 ) Zobla, ) v

It can be concluded that the generalized transform of any generalized function which vanishes
outside a finite interval is a continuous function on « > 0.
In addition, by theorem 9,

[ w1 g o) s = 2 [ o o) G an (40)
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GENERALIZED TRANSFORMS 15

The integrand on the right is continuous, being zero for ¥ < %, and s can be chosen so large that
the integral converges absolutely by virtue of (3). Therefore the right-hand side can be expressed
as d%f,/da® where f; is continuous on a > 0 and bounded by a polynomial. Hence

© ds
[T swyite ) ds = (=) 45 e (41)
onc > 0.
Since {f;(et) +f3(a)} H(et) is a well-defined function in K, the generalized derivative

() (i) H) = & (42)

is a generalized function § in K, which agrees with the right-hand side of (4) on a > 0. It has
thus been established that there is a g € K, such that

8@) = [ e haxds (@ > o), (43)

when £ e #+. The form of g is given by (42) but the representation is not unique because a
generalized function such as

M
2,0 ()
m=0

could be added to § without destroying the relation (43).

If g vanishes outside a finite interval, say (a, 4), we can multiply g by a fine function which is
unity on (a, ») without affecting the generalized transform. It is then evident from the above
analysis that g will contain only a term of the type f;. In other words, when g vanishes outside
a finite interval, the generalized transform is a continuous function of o on « > 0.

6. LimiITs

A theorem of some value in calculating generalized transforms is

TueoreM 11. If he '+ and if Lim g, = g where g, e K, and ge K, then

Lim :gm(x) h(et, ) dx = f:g(x) h(a, x) dx

M—>0

ono > 0.
It is important to note that the requirement Lim g,, = ¢ must hold for all «, i.e. more is being

m—>o0

asked than that the generalized limit be g on x > 0.
Proof. From (32)

f: Yt (o) f: (%) k{0, x) dxda = J:O (%) f:y*(oa)h(oc, %) da ds.

According to lemma 4 the inner integral on the right is good on x > 0. Ifitis handled in the same
way as in the proof of theorem 6, an application of corollary A 1 gives

lim [ g,(x) f * v+ (@) h(a, %) dovdx = f : () f " v+ (@) h(a, x) dadx

m— J 0 0 0

and the theorem is proved by using (32) on the right-hand side.
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16 D. S. JONES

Ifg = Z &, then g = Lim Z g, and so an immediate consequence of theorem 11 is
n=1 m—>o n=1

CoROLLARY 1la. If he #+ and if g = Z &, Where g, € K ., then
n=1

f T b )dr= 3 | gu(x) k(e x) dx
0 n=14J 0
ona > 0.
Now let x,(x) be infinitely differentiable (in the ordinary sense) on x > 0 and be such that

87‘
|X, (%) = 1| < €o(1+x2)F, ’?f'frﬂ <e(l1+28)Pr (r=1,2,..) (44)

on x > 0, where ¢,—0 uniformly as g#—+0 for s =0,1,.... For example, one could take
Xu(%) = e7#*. Then, if 7 is any good function and ge K,

7 v xtre) as = (=) [0 s rte) wu(op

on using the representation g = f where fe K, is continuous and bounded by a polynomial.
On account of (44), the right-hand side tends to

(= [Tt ax= [ v et ar

as 4 —+ 0. Hence le X.& = & without restriction on x. Taken in conjunction with theorem 11,

this gives o

CoRrOLLARY 11b. If he H+, g e K, and ¥, satisfies the conditions stated in (44), then

Lim ", ) M) d = [ ) o )

on o > 0.

7. INVERSION THEOREMS

The primary concern of this paper is the asymptotic behaviour of generalized transforms, but
inversion theorems are frequently of great help in solving problems in applied mathematics.
Therefore we shall indicate some of the conditions under which an inversion theorem will hold,
and also display some of the likely causes of failure of such a theorem.

If an inversion theorem is to be valid for a class of generalized functions, we certainly expect
that it will apply to functions of the type y*. Therefore, suppose that £, e #°+ is such that

f Ay ( y,a)f v (x) h(a, x) dyda = y*(y) (45)

on y > 0 for every good y*(x) which vanishes identically on x < 0. The double integral exists,
although it may not be absolutely convergent, because the inner integral is good on « > 0 by
lemma 4. If y+ is replaced by y;, where {y;} is a defining sequence for g, and the generalized
limit taken,

Lim [ (3, f i) h(e, ) drda = g(y)

NnN—> 0

on y > 0 is obtained.
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GENERALIZED TRANSFORMS 17

It is tempting to employ theorem 11 on the left-hand side and replace y;f by g in the limit.
However, theorem 6 only proves that

Lim | 72 (%) k(o x) dx = f " o(%) Ao, x) dx
n—>0 4 0 0

on a > 0; for theorem 11 to apply this has to be true in K. Consequently, further assumptions
must be made if theorem 11 is to be used. For example, if

Lim | ;7 (%) A(e, x) dx = §(a)
n—w J 0
where § satisfies (43) we can take advantage of theorem 11.

At the moment all that can be stated is

LemMa 5. If (45) holds with hy, h e S+ then

Lim [ hy(y,) f " it (x) h(o, ¥) dxder = g(y)
0 0

n—o

omy >0, andif  Lim H(x) f : v (%) k(o x) dx = H(x) f : o(x) (e, x) dx
n—0

then f ® hy(y, @) H(a) f * o(%) h(a, %) dx do = g(y)

ony > 0, ’ ’

It is clear from this lemma that an inversion theorem will hold only for certain classes of
generalized functions and that these classes will be different in general for different 2. However,
there are some generalized functions for which inversion always holds, if it is valid at all, and
these will now be discussed.

It was pointed out at the end of §5 that the generalized transform is a continuous function
when g vanishes outside a finite interval. In that case the second condition of lemma 5 must be
met and so we have

Tueorem 12. If (45) holds with hy, he S+, if g € K, and vanishes outside a finite interval, then

[7iatn,2) [ o) e ) arde = gt0)
ony > 0. '
The factor H has been omitted since it serves no useful purpose in this theorem.
It follows from (33) and theorem 12 that

f (g, 2) [g}n h(a, x)]wzodoc ~0 (18)

ony > 0. An immediate deduction is that the integral equation

[ i ag@da=at) ©>0

does not have a unique solution unless % and all its derivatives with respect to x are zero at x = 0.
On the other hand, if («, 0) = 0, there could not be an inversion theorem without the restriction

y > 0 otherwise the assertion ©
[ 0.mayax = o)

would have to be made and this is manifestly untrue.

3 Vol. 265. A.


http://rsta.royalsocietypublishing.org/

) §
C

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

@ A

I §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

18 D. S. JONES

There are corresponding results with % and %, interchanged. For (45) implies that

[i @] i [ v b dsanay = "ri ) 7w ay

for any yi{. The left-hand side can be written as
[T s ax " vt 6 iy 0 dy da

by (32), or as f : 7+ (z) f :/z(zx, %) f : 7 (9) hy(y, @) dy dadx

after another application of (32). Hence

[ b [ ) g 2) dyda = v ) (47)
onx > 0.

There are analogues to lemma 5 and theorem 12 which arise from (47). For example, if 4 is
a function of ax,

f :Iz(oc.x) hy(0,0)de =0 (x> 0)

which shows, when £,(0, a) = 0, that there could not possibly be an inversion theorem if the
behaviour of the generalized transform at the origin were excluded.

Actually, theorem 12 can be extended to a wider class of generalized functions. Let y(x) be
a good function of x and let I'(«) be good on & > 0. Then

fwr(a)fwy; (%) (%) b(a, %) dx dow = f: (%) 7(x) f:I‘(oc) h(o, %) decdx

0 0

by absolute convergence. The inner integral on the right is a continuous differentiable function
of x on x > 0 and is O{(1 +x2)%}. Hence, when multiplied by y(x), it is good on x > 0 and so

lim [ 7 (x) y(x) f: T'(a) h(o, #) dar dx = f " 40) 73 f:r(awz(a,x) dads.

n—0 J 0
Therefore Lim H(a) fw v (%) v(x) ke, x) dx
n—>wo 0

is a generalized function, without restriction on «, and we have

f °_°m T'(a) H(2) f : (%) 7(%) h(, %) dxdo = f : 2(x) y(%) f :I‘(oc) hayx)dadr.  (48)

Thus lemma 5 is satisfied and inversion holds.

Since y could be chosen to be zero outside a finite interval, this result includes theorem 12 and
is more comprehensive than it. Another choice for y(x) is e=#* (x > 0) and then, from the proof
of corollary 114, we have

TuEOREM 13. If (45) holds with hy, h e #°+ and if g € K, then

g(y) = Lim g(y) e~ = Lim fw/zl(y, o) H(ot) Jw g(x) e h(a,x) drxda (49)
240 2=>+0J 0 0
ony > 0.

For many purposes theorem 13 will be sufficiently general and so the problem of inversion
will not be considered further.
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8. THE ANALOGUE OF THE RIEMANN-LEBESGUE LEMMA

As a start to the discussion of the asymptotic behaviour of a generalized transform we shall
derive suitable analogues of the Riemann—Lebesgue lemma as it occurs in the theory of Fourier
transforms. The analysis of this section will be confined to ordinary functions, but the interval of
integration will not necessarily be restricted to x > 0.

Let Ay(a, x), h_;(a, ) be defined on the interval of integration (x is the variable of integration)
and be such that

oh_y(at, %) |ox = ho(o, %), (50)
|ho(cx, x)| < Ca?P(1 +x2)S (51)
for @ > 1 and |h_y(a, x)| = o{aP(1 +x2)51} (52)

as & —+00. When these conditions are satisfied on the interval of integration (a, &) we shall write
hy€ P(a, b); it is not necessary for P to be positive. It is assumed that £, is integrable and that £_,
is absolutely continuous but no other conditions are imposed in this section. This freedom from
restriction will permit the asymptotic estimation in later sections of integrals involving K () £(e, x)
where K may not be infinitely differentiable.

Suppose that f is absolutely continuous on the finite interval [a, ]. Then, by integration by
parts,

[} s mtom ax = Lo st = [ 716 s dn (53)

Since fis bounded, (52) implies that the first term on the right of (53) is o(a2?) as e -+ c0. Also
the second term is

{aZPf | f7(x)] (14 x2)5 dx} = o(a?P).

Therefore, as & — + oo, the right-hand side of (53) is o(a2P).
If (52) were replaced by

|h_y(2, %) | = Of(1 +a2) P4 (1 +4%)5} (B > 0) (54)
the same argument shows that the right-hand side of (53) is O(a2P—#). Consequently, we can state

LemmA 6. If f is absolutely continuous on the finite interval [a,b] and hy e P(a,b), then
b
[ £ (s 5) @z = ofasr)

as a—>+oo. If (54) holds f:f(x) ho(a, x) dx = O(a2P=F),

Next, let feL,(a,b) where, as usual, feL,(a,b) signifies that | f|? is integrable over (a, ).
Then, given € > 0, there is an absolutely continuous « such that

f: | fx) —k(x)|dx < e.

Hence, by (51), < Cea??

[} ) =k it )

since the interval of integration is finite. It follows from lemma 6 that

o(et, x) dx

< Cea?P +o(a?P).
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Since € can be chosen arbitrarily small we have

Lemma 7. If fe Ly(a,b), with (a,b) finite, and hy e P(a, b), then

[ 76 oo, ) e = ofa2r)
as o —>+ 0.
If fe L(a, b) and K is continuous, then fK € L,(a, b) and so lemma 7 gives

f Sx) o(a, %) dx = o(a?P). (55)

This may also be interpreted as saying that 4, may be replaced in lemma 7 by K(x) /y(e, x) where
K is continuous on the interval of integration.

Turning now to infinite intervals of integration we assume that (1+ x2)S f(x) € L(a, 00). Then
b can be chosen so large that

fw (1+2%)5 | flx)|dx < e.

< Cea??

Hence U S(x) ko(ee, x) dx

from (51). Combining this with lemma 7 we obtain

TueoreMm 14. If (1 +x2)8 f(x) e L,(a, 00) and hy € P(a, ), then

[ ey e ) s = oo

as o+ oo.
Theinterval ( — oo, a) could be treated in the same way as (4, co) so that there are corresponding

and foo

CoroLLARY 14. Theorem 14 remains true if a is replaced by — oco.
If the assumptions (50) to (52) are met when «——o0, then the subsequent lemmas and
theorem are still true as o — — oo provided that o(|x|?F) is used in place of o(c?F).

theorems for fb

We state only

There are several cases of interest in which %y(e, x) takes the form /y(ax). In such cases it is
worth remarking that the information that /,(x) = O{(1+ %)~} with A > 0 is not sufficient
to ensure that (51) holds for £y(ax) with a negative P. Thus the smallest value of P which would
apply in theorem 14 would be zero. Improvement of this result is not possible as can be seen

L | e—iom: s 1J‘oo 1 e—iz
—— —— e —_— a - —

from the example
fowu+ﬁmMm‘ o P (1+a2)M

with M > 1. Here the a-dependence does not involve M and, moreover, can be made to dominate
any inverse power of a by selecting # sufficiently close to 1.

By assuming slightly more about the integrand it is possible to achieve appreciably better
results than lemma 7. We shall consider only the finite interval (0,¢) with ¢ > 0 but there is no
loss in so doing because the theory is clearly applicable to any finite interval after a suitable
translation. The notation f el »(0,¢) will be used to indicate that on the interval f = yr; — 9,
where ¥y, ¢, € L,,(0,¢), are non-increasing and are bounded at ¢. By the addition of the same
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GENERALIZED TRANSFORMS 21

constant to each of ¢, and ¥, it can be ensured that both ¢, and #, are positive on the interval.
It will be assumed that this has been done so that ¢, and ¥, will be taken as positive non-increasing
and bounded at ¢, though not necessarily at the origin.

In the following ¥ will represent either 1, or ,. It will be shown firstly that, when 1 < p < oo,

Y(x) = o(x77) (56)
as x—+ 0. Suppose, in fact, that (56) is not true. Then there is a sequence {x,,}, with x,, < x,,
and lim x, = 0, such that Y(x,) > Cxz

NnN—>0
for some positive C independent of z. Since ¥ is non-increasing
Y(x) > Ca'lP
for x, ., < x < x,. Hence, taking x; < ¢, we have
2% 0 Cp <o)
f |¢(x)|pdx > X (xn_‘xn+1)“‘ =0 3 €ns
0 n=1 Xn n=1

where €, = 1—x,_4/x,. Each ¢, is positive and less than unity; the infinite series converges
because the integral is finite since ¥ € L,,(0,¢). Hence

@

In(1—¢,)
n=1
. . n
is convergent and so lim I (1—e,)
n—>o m=1
. n
is finite and non-zero. But II (1—¢,) = %,04/%
m=1

which tends to zero as n— oco. Thus a contradiction has been reached and we are forced to conclude
that (56) holds.

Having established (56) we now assume that « is so large that 1/af < ¢, where f is the same
as in (54). Then, by the second mean value theorem (see, for example, Jones (19665)),

4

S V(@) by, 1) At = (% + 0) f f/aﬁ hola, 2) dt

=y (%e + 0) {h_l(oc, ) —h_y (oc, &17)}

where 1/af < £ < ¢. It follows from (54) and (56) that

1/a

’ RIGLCY) dt‘ — o(a2P—+hin). (57)
1/a
1/ah 1/ah
Also, from (51) Y (£) ho(ot, 8) dt‘ < Coczpf Yr()di
0 0
< o(a2P—A+hIp) (58)

from (56) when 1 < p < o0 and from a well-known theorem of integration when p = 1. The
estimates (57) and (58) combine as

f: () hola, t) dt = o(a2P—A+IR),
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22 D. S. JONES

In view of the definition of f there follows

Turorem 15. If (50), (51) and (54) hold and if fe L, (0,¢) (1 < p < o), then

f 10 ol )8t = ofare—4+40)
as ot —> o0,

This is clearly an improvement on lemma 7.

The situation when p = oo is somewhat different. If yr e L(0,¢), it is essentially bounded,
i.e. it is bounded except on a set of measure zero. But, y(4)) > Cimplies that y(¢) > Cfor ¢ < ¢,
and therefore ¥ must, in fact, be bounded except possibly at the origin. Redefinition of ¢ at the
origin, if necessary, makes ¥ bounded. Thus fe iw(O, ¢) implies that fis of bounded variation;
the converse is obviously true. In this case (57) is replaced by

5 V(1) ho(a, 1) dt = O(a2PF)

1/oc
I/aﬂ

and (58) becomes () holax, ) At = O(a2P-F),
0

Hence we obtain

Tureorewm 16. If (50), (51) and (54) hold, and if f is of bounded variation, then

ff o(a, 2) dt = O(a?P—F)

as o.— 00,

9, PRIMITIVES

In order to apply the theorems of the preceding section to generalized transforms it is necessary
to ensure that / has similar properties to 4y, i.e. (50), (51) and either (52) or (54) must be verified.
Asfar as (50) and (51) are concerned the conditions imposed on u, are sufficient so that the main
question is whether either (52) or (54) can be satisfied.

Let he#+ and suppose that, corresponding to a given u,(u, = £), there is a w,, such that
forx >0

Oy 108 =ty |wyya| = 0farOr(1+x%)51} (59)
as a— + 00, where Q. = 2M,+ 2a,7— P,,. (60)
We might note that, if 4 e S5, Q, = 2by+ (2¢,—1)r (61)
and, if ke 5, Q.= 2N —r. (62)

Then u, €4Q,(0, 00) and it will be said that u, has a primitive of the weak type. In this case w, .,

complies with (52). If

|41 = Ofa@rar(1+42)55 (63)
as a—>+o0, (54) is satisfied and , is said to have a primitive of the strong type. Evidently, u, has a
primitive of the weak type when it possesses a primitive of the strong type, but the converse is
not necessarily true.

It may happen that u, has a primitive of the weak type not only for a particular value of r but
also for all the values r = R, R+1,...; when this occurs  will be described as weakly primitive
and (R) will be added if it is necessary to indicate the first member of the sequence. Corre-
spondingly, £ will be said to be strongly primitive (R) if up, up,,, ... all possess primitives of the
strong type.
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. o, o, iy,
According to (59) — = == o i,
Therefore Wypq —Uppq = B, (64)

where B, is a polynomial of degree r in x. If #, has a primitive of the weak type (2) and (59) show
that

B[ = ofar(1+4%)M}, (65)
where M is the greater of §; and M, .., because

Qi1—Qr =20, Py, 1+ Py, <0

from (4) and 0 < 4, < 4. Since P, is a polynomial in #, only the coeflicients involve o and therefore
each coeflicient must be o(x?r). Consequently

|0B,Jox| = of{a®r(1+ x2)M—1}, (66)
Therefore (59) and a derivative of (64) give
|0ty 1] 0% —u,| = 0{o@r(1 4 x2)M—3}, (67)

Conversely, if (67) holds so does (66) and then integration with respect to x gives a P, satis-
fying (65). The w,,, given by (64) then complies with (59) and u, has a primitive of the weak
type. Hence we have

LEMMA 8. u, has a primitive of the weak type if and only if

|Gty [0x — | = 0fe@r(1 +%) 24}
Sor some M, as a.—> + o0.
In fact, since @F,/0x is a polynomial of degree r — 1, M need not usually exceed 3r.
A similar proof applies for a primitive of the strong type, the main difference being that o(x?r)
is replaced by O(a®r+1) throughout. Hence

LEMMA 9. u, has a primitive of the strong type if and only if

|otaf o —1,| = Ofer@rmn(1+2) ¥4}
Sor some M, as o. —> + co.
An immediate deduction from (2) and lemma 9 is that /# always has a primitive of the strong
type, namely u,.
It has been seen in theorem 1 that x4 e #+ when he £+ and that U,, as given by (6), plays
the same role for y/ that u, plays for 4. Now, from (7)

oU, ou, =) (= (ou, or T_
3x+1_ U, = t,11(c,0) B_; (%) +x (—5)—211—147) + (f_ i) i fo ( at‘”-ur) 9—t"{<x_t) 1y(8)}de.

The functions P._; and y do not involve o and #,,,(a, 0) = O(a%r+1). It therefore follows, from
lemma 8 (9), that U, has a primitive of the weak (strong) type whenever #, has. Thus multiplying
h by x does not affect the possession of a primitive, though it may alter the value of §; which is
operative. One conclusion is

TueoreM 17. If h e £+ and is weakly (strongly) primitive, then xh, where x ts defined in theorem 1, is
also weakly (strongly) primitive (with the same R).
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24 D. S. JONES
As far as the particular spaces #7 and 3 are concerned, (10) and (11) imply that

Othy 4 7! r=1 (—)m+1yr—m-1 or-m
iy T e LT o |
oy U (ibot)r it 7,,,2_30 m! (r—m)! (r—1—m)! 3x,_m](06, 0)

— 0{06(201 —1) r+-2hy—1 ( 1+ x2) ;(r—-l)}
from (9). In this case (12) shows that
Q, =2Mg+2c,r—7r = 2by+ (2¢,— 1) 7.

Since 0 > 2¢; — I > — 1, the condition of lemma 9 is satisfied for r = 0, 1, .... Thus £ is strongly
primitive when ke #75.

Ifhe#y, (23) and lemma 9 show that 4 is strongly primitive.

The combination of these results with thcorem 17 gives

THEOREM 18. If he A}, x(x) h(a, x) is strongly primitive (with R = 0). If he A5, x(x) h(ax) is
strongly primitive (with R = 0).

10. SEPARATION OF THE CRITICAL POINTS

In the discussion of the asymptotic behaviour of gencralized transforms the class of gencralized
functions to be considered will be limited to those which are likely to occur in practical applica-
tions. Accordingly, the following assumption is made.

A. The points where g(e K.) is not infinitely differentiable (in the ordinary sense) are finite in number.
These points, together with + oo, are called critical points.

In general, the critical points will include the origin, since the derivative in 4 is not intended
to be one-sided. Let M be the number of critical points not at infinity and let 4; be an interval
of length 28 which has the jth critical point as mid-point. Let 4;;,, be the interval which extends
from 1/6 to +co. Then & can be chosen small enough for the 4; (j = 1,..., M +1) to be disjoint
and to contain only one critical point each.

Let ¢; (j=1,..., M) be a finc function which vanishes identically outside 4; and which
cquals 1 on the interval A of length 26, ( < 24) with the jth critical point as mid-point. On
A;—Aj let 0 < ¢;(x) < 1. Let n,,,,(x) be an infinitcly differentiable function such that

<Py S 1
PSS hand Tanale) =1 (x> 18y),

=0 (x<1/d).

The interval from 1/, to + oo is denoted by Ay 4.
Consider the function 7 defined by

(%) = ¢1(x) +Ba(%) + ... + Bs(%) +Par4a (%) (68)

It is infinitely differentiable, takes the value 1 on Aj; U 4; U ... U Aj;,1 and vanishes outside
A, UA, U ... Ud;,. Also 0 < 9 < 1. Consequently, the function which is zero for x < 0 and
equals 1 —9(x) for x > 0 is a finc function which vanishcs in a neighbourhood of each critical
point. Therefore, if 4 € 2+,

fwg(x) h(a,x) dx = f: g(x) p(x) h(a, x) dx +f g(x) {1 —9(x)} h(a, x) dx.

©
0 0
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GENERALIZED TRANSFORMS 25

Now g is infinitely differentiable away from the critical points and so g(1— ) is a fine function
which vanishes identically for x < 0. Therefore it can be regarded as a y* and, by lemma 4,

[7 et 0=y b ) ax

1s good on a > 0. Hence lim oc’fmg(x) {1—n(x)}h(a,x)dx = 0
0

a—>+ o
for any finite 7. Thus we have

TueorEM 19. If g € K and satisfies A, and if h e H+ then

|/ ey ax = [ o)1) e ) -+ 0@

0

Sor any finite r as o0 — + o0.

Because of (68) this theorem indicates that, in many cases, the dominant asymptotic behaviour
is the sum of contributions from neighbourhoods of the critical points.

The contribution from the critical point +co is different in character from that due to the
critical points at a finite distance. Therefore the critical point + 0o must be handled separately
from the other critical points; its contribution will be examined in the next section.

11, THE CONTRIBUTION FROM INFINITY

The main object of the present section is to demonstrate that, under certain conditions, an
order estimate of the contribution from infinity can be derived and that, in many circumstances,
the contribution is negligible compared with that from other critical points.

Let x, be a function of ¥ which satisfies the conditions imposed on y in theorem 1 and which is
such that 1/y, satisfies the same conditions, although the P, need not be the same for both y, and
1/xo- Typical y, are 1, €'* (a real) and 1 + x2.

A generalized function g is said to behave-S at positive infinity if g is infinitely differentiable (in
the ordinary sense) for x > 1/8 and (1 +x2)5 [g(x)/xe(%)]® is absolutely integrable over (1/8,00)
for some y, (with the properties of the preceding paragraph) and for some non-negative integer [
(compare Jones (1966a)). If (1+x2)S[g(x)/xo(x)]¢D, (14+x2)S [g(x)/xo(x)]¢?, ... are also ab-
solutely integrable over (1/8, c0), g will be said to be well-behaved-S at positive infinity.

For example, ei®®xfIn x is well-behaved-S for any positive S, on choosing x,(x) = e~i%® and
taking / greater than 25+ 1+ Z(f). Similarly x#ei*® is well-behaved-$ for any positive § by
selecting y, = e~i*%,

Now, on account of theorems 1 and 8,

[7 ) ) a0y dx = [ (gl narwa xu e

0
= (=1 (nareagn) Yoa

on a > 0, where U, is defined in (6) but with i, in place of y. The derivative (9;,,18/x,)® consists
of 93741(g/X0)® plus a finite number of fine functions. Also, if ¢ is any fine function, identically
zeroon x < 0,

[T 00 Uit as = (=3[ 9900) Ui

4 Vol. 265. A,
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26 D. S. JONES

by an application of theorem 8. In fact, the integral is over a finite interval and it follows from (8)
that the right-hand side is O(a?Mo+20:0+9-Po,14s5) as o — + 00, By choosing s sufficiently large we
can make this arbitrarily small because of (4). Hence, as o — + oo,

[ 300 Ui, s = 0a (69)

for any r > 0. Consequently

7 e maraate) o) s = (1 gl G+ 0 (70)

for any r > 0.
If u; has a primitive of the weak type so does U, (theorem 17) and, from (8),

| < Ca®r(1 42y
as o —+c0. Here Wy = sup (My+ Py, My+ Py +%, ..., My + B+ 1)

If g behaves-; at positive infinity, (1+x2)4 (g[x,)® is absolutely integrable over (1/8,00) and
theorem 14 will be applicable. Hence we have proved

LemMa 10. If he A+, if g behaves-py at positive infinity and if w, possesses a primitive of the weak type

[7 60 naria(a) s 2) i = ofa®y
as o —>+ 0.

@,is defined in (60) and it is clear that the larger / can be made the smaller will be the contribu-
tion from infinity. A judicious choice of y,, which is at our disposal to some extent, may be helpful
in keeping y, as low as possible.

A very useful , is €719 where d is real. For this y,, £, = 0 for all » and u; = My + 4. This
result, true for any /4 € #°+, can be improved for certain 4. For example, if # € #5", (12) and (13)
imply that

Py Q= 2bo+ (26, - 1)1,

My = Sup (06, a:'l +% e (l; +%l)>
a, = sup (ay, ay, ..., a,)

and so Uy = ¥l +sup (ag, ayy ..., @).

Further reduction in g, can be achieved when y, is e~19% and / e #’;. Replace b in (10) by b + d/a;
a can be chosen large enough for this to be non-zero. Then 0"u,/0x" = h(a, x) ~i9% and the estimate
in (12) is unaffected as & —+00 because b +dja—b. Thus p, = sup (ag, a; +13, ..., 4+ 3l). This
can be expressed as

LemMa 11, If he A and x, = €79 (d real), then p, = My, in lemma 10.

In general, there is nothing to prevent s, increasing as / increases and this imposes more
constraint on the behaviour of g at infinity the larger I. However, it is possible that, for a given £,
an appropriate X, can be found such that #; < N no matter how large / is; such an £ can be said
to be of limited growth.

For instance, if 4 € #°f, put b +dfa for b in (16), i.e. think of A(x) as k(x) e~i0+@/22 Then (22)
and (23) continue to hold, Inequalities (21) and (24) are also unaltered except that C, now
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depends on «. However, this dependence on « is of no consequence since it arises from the
presence of b +dJa, which tends to & as & —oco. Hence we have shown

LemMa 12. If he 545 and xy = €79 (d real), h is of limited growth.
If g is well-behaved- N and 4 is of limited growth it is evident that / can be taken as large as
we like in lemma 10. Accordingly, we have

THeOREM 20. If g is well-behaved- N, if h is of limited growth, then for any r > 0

|7 @m0 b ) ds = ofa)

as a—>+oo.

On account of theorem 18 and lemma 12, theorem 20 will certainly be applicable when £ € 55 .

These results permit estimates of the contribution to the asymptotic behaviour from the
critical point at infinity. From some points of view theorem 20 is the most important because it
shows that the contribution from infinity is negligible compared with contributions from other
critical points so long as these are not exponentially small. However, in appropriate circumstances
lemma 10 may be sufficient. For simplicity of writing most subsequent theorems will be based on
theorem 20, but an additional clause using lemma 10 could always be added as in the following
theorem which comes from theorem 19 and (68).

TuEOREM 21. Let he '+, ge K, and satisfy A. If g is well-behaved-N, if h is of limited growth,
then, for any finite r > 0,

f : 2(%) h(e, %) dx = g :g(x) $,(%) (e, x) dx + O ()

as oo —>+ 0. If only the conditions of lemma 10 are met, O(o™) is to be replaced by o(a®?).

Whenever the first half of theorem 20 is relevant, the dominant contribution to the asymptotic
behaviour of a generalized transform can be expected to come from those points where g is not
infinitely differentiable in the ordinary sense.

K &y
|5 - = gut)]

k=1
is absolutely integrable over the interval where ¢; is non-zero and that gy (£ =1,...,K) is
infinitely differentiable away from x = x;. Assume that uy, has a primitive of the weak type.
Then, by theorem 8,

© K © K Ny
fo <g(x) —k§1 gjk(x)} @i (%) h(a, %) dx = (— )Njf [{g(x) —ké‘,lgjk(x)} ¢,(x)] uy; (o, x) dx.

0

Suppose, in fact, that

The derivatives of ¢; vanish on an interval surrounding any point where g and g;; are not
infinitely differentiable. Therefore any term from the derivative in the integrand which contains
a derivative of ¢, is a fine function and is covered by the estimate in (69). The remaining term

involves Wy

ECERe]

which is absolutely integrable and vanishes outside a finite interval. The assumption on Uy;
ensures that lemma 7 is applicable and so the integral on the right is o(a9#j). Hence, with the
given assumptions,

[ e g0 man ax = 5 |7 gulo) dy(a) b, 5) dn-+o(aom). (71)

4-2
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This formula is useful in enabling g to be approximated by suitable g;;. The power @y, which
occurs is, of course, a maximum dictated by the inequalities of definition 1. For particular 4 it
may, and usually will, be possible to make considerable reduction below this general estimate.

It may be possible to simplify the right-hand side of (71) in a very helpful fashion when
circumstances are favourable. The analysis differs according as the critical point is the origin
(j=1) or not (j = 1). Suppose gy;, and 4 satisfy the first condition of theorem 21. Then

7 gty e ) = [ ) 200 it ) e O() (72)

for any r > 0, because gy;, has no critical point other than the origin. Substituting (72) in (71)
we obtain

f ") $a(3) B 3) dx = 3 [ ) ) da-+o(a0). (73)

This formula has the advantage of expressing the contribution of the origin to the asymptotic
development in terms of the generalized transforms of the g,; without the intervention of ¢;. As
long as g;;, has a reasonably simple transform a good estimate of the asymptotic behaviour can
be derived.

When j + 1, H(x) g;;(x) is well-defined because gy, is infinitely differentiable in a neighbour-
hood of the origin. Thus H(x) g;;(x) € K, but it may have a critical point at the origin as well as
the one at x = ;. Hence theorem 21 will now give

[ g o) s = [ gu0) (9a0) 44,0} et 2) e+ 0(a7).

Consequently, when j + 1,

[at g an s = 3 [ gul) (1= hiha,n) drro@on) (1)

as o« -+ 0. In essence this states that, in calculating the asymptotic behaviour, the contribution
from the origin to the generalized transform should be ignored. There is no difficulty in esti-
mating the contribution due to the origin because g, is infinitely differentiable there (see
theorem 23 below).

The combination of (73), (74) and (71) leads to

TuEOREM 22. Let h e A+, be weakly primitive and of limited growth. Let g € K, satisfy assumption A
and be well-behaved-N. If g, (k =1, ..., K;) is well-behaved-N and infinitely differentiable away from

J
x = x; and if, in some interval including x;,

K; ()]
[g— P gjk]
. j=1

is absolutely integrable, then

0 K, o M K; (o
f g) oy x)dx = X | gp(x) h(o,2)dx+ T 5 | g(x) {1 — by (%)} h(er, x) dx + 0 (),
0 k=1J0 7=2k=1J0

(75)
as a—~+ 00, where Ny = max (Ny, Nyy ...y Nyp).

If 0k /0 has the same properties as £ in theorem 22 we can replace % throughout (75) by ok/oc.
On account of theorem 7 this is equivalent to saying that a derivative of the asymptotic develop-
ment (75) can be taken without increasing the error. The relative error might, of course, be
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increased and, if this happened, it would probably pay to undertake direct consideration of the
derivative.

Even when g and g;;, are not well-behaved the estimate in (75) may still be correct, provided
that lemma 10 can be used with a sufficiently large value of /.

12, DISCONTINUITIES IN DERIVATIVES

One particular expansion which is of interest can be derived from the foregoing analysis.
Suppose that in a neighbourhood of the origin g(x) = H(x) f(x) where fand its first K derivatives
are continuous functions on x > 0 and f®&+1 is absolutely integrable. Then

K xk (K+1)
[ {700 - 5, o[
k=0 £:
where f®(0) = lim f®(x), is absolutely integrable, being Hf®+), and so we may take

x—>+0

g1 = (#*/k!) f®(0). The function x* is well behaved at positive infinity because its (k4 1)th
derivative vanishes and indeed putting ! = £+ 1, y, = 1 in (70) shows that (72) is true. Hence,
from (73), we have

TrEOREM 23. If f® (k= 0,...,K) are continuous functions and f&E+V is absolutely integrable on
0 < x < 0, and if ug 4 has a primitive of the weak type then

[T simnanar= £ LU0 [ e, ) desolatner

0 k=0 k! 0

as o —>+ 0.
At a critical point which is not the origin the situation is somewhat different. If, in a neighbour-
hood of ¥ = x;, g = f where f and its first K derivatives are continuous, (74) gives

J7 o) oy iy = 3 L2 [ a1 = 1)) bt ) s o).

k=0

Since 1 — ¢, is essentially of the same form as #,,,, the argument just used above shows that each
of the integrals on the right is O(a~") for any 7 > 0. Hence we have shown

Tueorem 24. If f® (k= 0,...,K) are continuous functions and fE+Y is absolutely integrable on
—0<x—x; <O8(J* 1), and if ugy has a primitive of the weak type

7709 8,0 o) s = o(aomn)
as a—>+oo. ’

If f®(0) = 0 for £ = 0,1, ..., K theorem 23 gives the same kind of behaviour as theorem 24.
Both theorems demonstrate that the more derivatives of g that are continuous across the critical
point the less dominant is the contribution from the critical point.

There is one method of calculating the terms in the series of theorem 23 which may be helpful.
It was given under different circumstances by Willis (1948). It is not difficult to see that, on & > 0,

k © ©
Lim —EL,C (—)’“f e h(o,x)dx = Lim | xke*®h(a,x)dx
0 w—>+0J o

= fmxkh(a, x) dx
0
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from corollary 115. Thus the terms in theorem 23 can be calculated from the generalized limit
on the left. In particular, if

f * e h(oy k) dx = 3 hyar) i + o )
k=0

0

as y¢—>+0, then f:f (%) §a (%) Ao, x) dx = > (=)Ef®(0) hy(2) + (ax+2). (76)

k=0

13. CONTRIBUTION FROM THE ORIGIN

This section is concerned with evaluating the asymptotic behaviour furnished by the critical
point at the origin when g cannot be represented by the simple series expansion of the preceding
section. The easiest result occurs when g = (Hf)™ on (—6,8) where feL,(0,d8). Then, by
theorems 8 and 1,

[7 at0) a0 ) @ = (=) [ 00 55 04 Bl )

= (=) 1) gt 2) d -+ 0(a)

for any r > 0, by (69) because any derivative of ¢, vanishes identically on an interval which
includes the only possible critical point of f. Therefore, so long as a,, ¢ > 4,,_1 o, lemma 7 gives
[ ctpy ) ) s = o(oom) (1)

0

as a— +o00. Equally well, if g™ is absolutely integrable theorem 8 enables us to say that

7 t0) #1000 it 2) e = ofaom),

when u,, has a primitive of the weak type.

The analysis becomes more complicated when one wishes to use a series expansion for part of
the integrand but not for the whole. Suppose that g = (Hf)™ where m; <m and that
x$(Hf)® e L,(—6,0) for s = my,my+1,...,m. Let K(x) be continuous and have m continuous
derivatives on 0 < x < 6. Then

[7 ot K5y s sy = "5 S5 [t e ) e

5=0 s!

" K(x) —m‘le@(O) x5/s!
+[ " amg(a) afo) | ——=

p } h{e, x) dx.
The quantity in [ ] is continuously differentiable m —m; times and x[x™ g(x)]® e L,(— 6, §) for
s =0,1,...,m—m,. Therefore the (m —m;)th derivative of

my—1
K-S KO©wlst
emg(s) ¢1<x>[ = _ et KO(0) m]

sem, !
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is absolutely integrable over ( —d, ¢). Hence, as in the derivation of (71), this quantity provides
an integral of o(a®n-m) so long as u,,_,, has a primitive of the weak type. We have therefore
demonstrated

Tueorewm 25. If K is continuous with m continuous derivatives on [0,0], if ¢ = (Hf )™ (0 < my < m)

where x*(Hf )9 e L,(—8,0) for s = my,my+ 1, ...,m and if t,,_,, has a primitive of the weak type then
e} m—1 K(s)(()) e}
7 et 0wy sy ) = 5] T [ ape) ) ) o cmm)
o !

as o>+ 0. If, in addition, x™'g is well-behaved-N and h is of limited growth, ¢, on the right-hand side
may be replaced by unity, provided that g has no other critical point than the origin.

A corresponding theorem, with a better estimate of the error, is supplied by theorem 15 or
theorem 16 when suitable conditions are satisfied. Recalling lemma 9 we have

TueoREM 26. If K© (s = 0,1, ...,m—1) is continuous and K™ is of bounded variation on [0, 0], if
g = (Hf)rm) (0 < my < m) where xs(Hf)(s)epr(O, ) for s =my,my+1,...,m and if w,_, has a
primitive of the strong type then

® m=1 K©(0) [
|7 o) K o oy s = "5 0 [ gl ) e ) -+ R,
as o—>-+o0, where R, = o(a®@m-m—F+8P) (1 < p <o0) and R, = O(a®m-m=F) (p =oc0) with
B = Qun, — Quny+1- Unity replaces ¢, on the right under the same conditions as in theorem 25.

Neither of theorems 25 and 26 ensures that the terms in the series are more significant than
the error term. Indeed, it is impossible to frame theorems of such generality and retain this
certainty. However, in some cases, one can have a reasonable degree of confidence not only that
the terms in the series dominate the error but also that they are likely to be of a decreasing order
of magnitude.

Suppose first that z € 5#§. On account of theorem 18, lemmas 7, 2 and 3

[ wtpyo g 5) () s = o)
0
for any integer n, when x%(Hf)® e L,(0, 8). It is understood that, in this notation, A is the same
as h_, of § 2. Hence, from theorem 7,
7 (79 1(x) 9 (o) e = o(a2¥)
0
or, so long as s > my,

S [ () 8 a) - ) e = o(a2)

dos 0
from theorem 8 and the fact that any derivatives of ¢, lead to the transforms of fine functions.

S [ (Y ) v () s = o)
dor 0

Hence

for 0 < 7 < 5. It can be deduced at once that

[ ey ) oomsn e e = ofavemr) (78)
0
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for 0 < p < 5. On choosing, for any given p, n = my; — p we see that

[ wota) (o) hlo) e = (oo (79)

0

for 0 < s < m, when g satisfies the conditions of theorem 25 and he#§. The estimate (79)
shows that, when 4 € 55, the successive terms in the series in theorem 25 may be expected to be
of decreasing order of magnitude and that the last term retained should be more significant than
the error since, by (62), Q,,_,,, = 2N +m; —m when he H#5.

More generally, if u,_,, (m; < p < m) has a primitive of the weak type,

[} st g, dx = ofas-m)
0

because, when the derivative inside the integral is evaluated by Leibnitz’s theorem, each term
is absolutely integrable. It follows from theorem 8 that

f " w0g(%) by (x) h(o, x) dx = 0(cc@-my)

0

form; < p < m. Since Q,_,, decreases as p increases this provides the required result. On account
of theorem 18 this result is true in particular when £ € 5} or ke 5 ; some idea of the rapidity
of decrease is given by (61) and (62).

14, CRITICAL POINT NOT AT THE ORIGIN

When the critical point is not at the origin one method of dealing with it is to use a formula
such as (74) and then attempt to employ the theory of the preceding section. There is, however,
another way of proceeding which can be valuable. Since g is a generalized function there is a
continuous f'such that ¢ = f® for some finite . The functions H(x —x;) f(x) and H(x; —x) f(x) are
well defined. Therefore

g=85115%

where 81(%) = {H(x —x;) f(%)},

&a(x) = {H(x;—x) f(x)}.
Thus g; = Ofor x < x;and g, = 0for x > x;. The separation of g in this way is not unique because
g1and g, could be replaced, for example, by g; +8%)(x — ;) and g, — 0®)(x — x;) respectively, since
this replacement leaves g; + g, unaltered and retains the properties g; = 0 for x < x;, g, = 0 for
x> X

By theorem 10, with 0 = 1 and 7 = —x;,

j: g1(x) ;(x) h(a, x) dx = f: 81(x +x;) Py (x) Ao, x +x;) dx

and the critical point has now been converted to the origin so that all the theorems of the
preceding section are available.

The same procedure can be adopted for the integral involving g,, written as one from — oo to X,
after changing the sign of ». Should it be desired to replace ¢, eventually by unity it will be
necessary to provide %(a,x) with an extension to negative values of ¥ which has properties on
(— 00, ;) similar to those of 4 on (x;, 00).
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In this way the discussion of the contribution from a critical point which is not at the origin
can be subsumed under that for the critical point at the origin. The possibility that the behaviour
of & at two critical points may be substantially different is examined in the next section.

15, APPROXIMATION TO THE KERNEL FUNCTION

In some cases it may be desirable to make approximations to 4 in order to simplify the calcula-
tions. Therefore the effect of a straightforward expansion will now be considered.

Suppose that & e 55 ; then the possibility exists that a reasonable approximation to the first
few terms of the asymptotic development might be obtained by using the first terms of the Taylor
expansion of £ instead of £ itself. If this is done in a neighbourhood of ¥ = x; we obtain

S—1 A8}(s) . ©

> vk (az;) fo (% —x;)% g(x) p;(x) e~10* dx. (80)

Now, if (¥ —x;)S g(x) e Ly(x; — 6, x; + 0) we know, either from Jones (19664) or from (79) (with
N =0, m; =), that the 1ntegral is 0(a5—%) as a—>+o0. Hence, a typical term in the series is
o{k®(ax;) a5} which is o(a®) when x; = 0 and 0(5+2¥-2%) when x; + 0 from (14). Thus the terms
in the series will probably be of decreasing order of magnitude when x; + 0 and we may hope

~ |
§=0 .

that a reasonable approximation can be derived in this way. When x; = 0, however, all the terms
seem to be of the same order of magnitude and it could not be anticipated that the expansion
would be valuable.
Let us now attempt to assess the error introduced by using the approximation (80). Let £, be
defined by 51 s
ky = k(ox) — X = (% —x;) k9 (o).

s=09-
Then, an integration by parts gives

x k* e—lbax _ k e—ibex x 1 (= P k* R
stz = | S, i o) B Sk gty S e
By Taylor’s theorem

ke S(x x;)S K[ ofx; + 0 (x — x;) 1]

Y
o’ ® oS+ S+1 JS+1)
=37 (2 — ;)% K9 (ux;) +m (% — ;) STLES O [af; + 0y (x — %) 1],
Ok, aS(x—ux;)51 oS+t
5 = Eéff))—,“ K aug) + =g (2 =) S Kol + O (x —2))],
where 0 < 0 < 1,0 < 6, , < 1. Hence
x k e——ibax e—l ~ibaz, Xj
Zj J
S'l bf {k(SH)[oc{x +0,(x —x;)}] —ﬁ-—k(S“)[a{x +0,(x—x; }]} —Abaz dx

— O(OLZN—ZBS~1) + O(azN—ZBS—m’F)

from (14), when x; # 0 and x lies in the neighbourhood of #;. On identifying £, /a5 (x — x;)S and
the integral with %, and 4_, respectively we see that (50) to (52) are satisfied. Since (x —x;)S ge Ly,

5 Vol. 265. A.
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lemma 7 shows that the error in using the approximation (80) is o(S+2¥N-205), Consequently, we
can state

TueOREM 27. If (x—x;)5 g(x) € Ly(%; — 0,%; +0), x; % O and if he A5 then, when

h(ox) = k(ax) e—ibee,

f () 45(x) h(ax) dx = 5 & Ky f T ()7 g(x) () e e + o (oS H2N-205)

s=0

as o —>+ 0.

It may be possible to improve the error estimate by taking advantage of theorem 15.

This theorem gives an approximation for the contribution from a critical point, which is not
the origin, in terms of Fourier transforms. The Fourier transforms themselves can, of course, be
estimated by the methods of § 13 (see also Jones 19664).

Exactly the same technique may be employed when /e #f with the difference that the
origin need not be excluded. Thus we have

TueoreM 28. If (x—ux;,)5 g(x) € Ly(x, — 0, %, +6) (L1(0,8) if x;, = 0) and if he H{ then, when
h(a, %) = j(a, x) €=,

[7 0 ) o = "5 3 2 [ (=) ) () = e ofasso
0 k 0

s=0 S!
as o —>+oo.

A typical term in the series on the right-hand side is o(a5 21~ s+2b) on account of (9) and the
fact that the integral is o(o5—%). Thus the successive terms in the series may be expected to be of
decreasing order of importance, but larger than the error term.

It may happen that g is sufficiently non-singular at a critical point for us to say that
(x —x;)5 g9 (x) e Ly (x; — 8, %;+ &). In that case the form of theorem 27 is not really suitable because
it overestimates the size of the error term. However, we can use theorem 8 to write

fwg(x) h(ox) dx = (=) J.: gO(x) h_y(ox) dx.

0 al

It follows from lemma 3 and theorem 27 that

Jo g(x) ¢;(x) h(ax) dx
S—1 y8—q ©
= (=)0 5, ETRO ) [ ()5 g000) 6,00 epe g o(@sNsa) - (51)
s=0 . —
as o — 400, This form can be recast into one which is closer to that in theorem 27, Now
d S—1 ys—a i oaS—4 1 o tba
a;c <o 5! k(fal(a‘xj) (x_xj)se bot = — (S_l)!k(—sg(“xf) (x_‘xi)s 1eg-lbaz
S—1 cxs—q+1 © .
+ 5 I M () (r— ) e ooe
on using (19). But, since (x —x;)S-1g¢Pel,,
aS—quSg((axj) j . (x_xj)s—1 gD (x) ¢j(x) e—ibaz Jy — o(aS+2N—2BS—Q) (82)

which is the same as the error term in (81). Therefore we can employ theorem 8 to reduce ¢ to
g— lin (81) without affecting the error. Next observe that, if g is replaced by g — 1 on the left-hand
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side of (82), we can use equation (26) of Jones (19664) to demonstrate that the right-hand side
of (82) is unaltered. Therefore we can repeat the process to reduce ¢ — 1 to ¢ — 2 in (81). Applying
this result ¢ times we obtain

TuroreM 29. If (x—x,)5~? g~ (x) e Ly(x;— 8, %;+0), %, 0, for p = 0,1,...,q and 1f h e s
then, when h(ax) = k(ox) e=be® the expansion of theorem 27 holds but the error term is replaced by
0(aS+2N-208-q),

It is not so easy to find such a satisfactory analogue of theorem 28. It is easily verified that

; gty 3‘?’].(06, xlc) —i S
o) = 3 5250 (=) eeef =)

belongs to #¢ . The inequality (9) is satisfied with a,, b, replaced by a,,gand b, +¢, S respectively.
The corresponding @, is 2b, + 2¢,S + (2¢; — 1) 7. This means, as for (71), that

© . S-11 0%y .

f g {](06, x) _ - 2J (x _ xk)s} e~lbax dx = 0{062b0+201$+(261—1) q}.

0 s=o §! Oxf,
However the last term that is retained in the series is O (a2S+2b0—2¢1+1-4) 50 that the error estimate
is not necessarily smaller than the estimate for the last term of the series. The reason is that each
additional power of x in a Fourier transform reduces the asymptotic behaviour by 1/a, whereas

the reduction for a generalized transform in i is 1/a?4~1, For this reason we cannot expect, in
general, to provide an error estimate which is smaller than the terms in the series.

16. EXAMPLES v
It has been shown in § 2 that el®* e #,. Also, for this &, du,/ox = u,_, so that, according to
lemma 9, u, has a primitive of the strong type for r = 0, 1, .... Furthermore, u, = O{(ax)™"} for
large x and so, when y, = 1, u, = —r with the consequence that % is certainly of limited growth.
In addition @, = —3r.
It follows from theorem 20 that, if g is well-behaved-N (with x, = 1),

[7 a0 i) e = o(er)

for any r > 0, as & —> +00. Theorem 21 then shows that, if g has no critical point other than the
origin, for any r > 0 © °
J g(x) el*?*dx = f g(x) ¢y(x) el** dx + O(a™) (83)
0 0
as oo —>+ 0.
Next, observe that, since e~#** satisfies the conditions imposed on y, in (44),

0 [c)
f xleiex? dy = Lim x! elox?—px? dx
0 p—>+04J 0
ona > 0 when Z(A) > — 1. It is an immediate consequence that, when Z(A) > —1,

(FA - edmi+1)

208r+E (84)

[eo)
f xtelee® dy =
0

ona > 0. IfZ(Q) < —1but Aisnot anegative integer we may use the fact that x*H(x) is defined
so that (PH(X)Y = AA-1H(x). (85)
5-2


http://rsta.royalsocietypublishing.org/

)
A

/

PN

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/A \

P
'
yas N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

36 D. S. JONES
. © e 210 [® -
Then theorem 8 gives f xr-Leler® dy = ~ 5 M1 elem® dy
0 0

= (JA—1)! ehrirj2qdn

from (84). Evidently, therefore, (84) holds unless A is a negative integer.
It may be shown in a similar way to that for (84) that, when Z(A) > —1,

© 1) 1\ pd7i(d+1)
fxunerdezA B (A1) —Ina) (86)

0 406’%/\“’%
on a > 0, where {(x) = x!'/x!. Now (85) holds even if A is a negative integer ( Jones 1966 5) with
the understanding that

€ understanding a x“lH(x) _ {H(x) ln x}/ + C(?(x).

Hence, using (86) and theorem 8, we find that, on o > 0,

(iOC)m
m!

f x—2m—1eles® dy = (C'—%Ina) (87)
0

form = 0,1,2,.... Here C’' is arbitrary to the same extent that C is. On the other hand, if the
integrand contains ¥~2”, we obtain a formula which is the same as (84) with A = — 2m. Therefore
we conclude that, on & > 0,

fo gt eloa? gy = Y20 2 2 XJ;_ (88)

when A is not a negative odd integer. When A is a negative odd integer (87) must be employed.

Corresponding results for integrands with logarithms can be deduced from (86) in a similar
manner.

Suppose now that the function K(x) is bounded by a polynomial, has no critical point other
than the origin and that K@ (s = 0, 1, ...,m— 1) is continuous while K is of bounded variation
on [0,4]. Then, if g(x) = x*—"H(x) where 0 < Ay < 1 and the positive integer » does not exceed
m+ 1, the conditions of theorem 26 are met with m; = n—1and (1/p) > 1 —2A,. Also x™+—"H(x)
is well-behaved-N for some finite N and % is of limited growth. Thus the conditions given in
theorem 25 for replacing ¢, by unity are complied with. Consequently, if K has the properties
just stated, (83), (88) and theorem 26 give, when A, =+ 1,

xo~nK (x) et dx = 3 R 77 reey K©(0) + ofodn—m-1-2t9}  (89)

foo m 1L (A +s—n—1)}! eimi(o+s—n+1)
0 s=0

as oo —>+ 00, where ¢ > 0. If Ay = 1, the formula (87) must be used in those terms in which 1 +s5—n
is an odd negative integer; the error term in this case is O{od»—m-1},

Similar expansions can be derived when g(x) = x%-"H(x) In x.

As an example of a kernel in S} consider

exp {i(e+v)# (x +1)% —iox},
where v > 0, 0 < # < 1. This satisfies (9) with ¢; = 4u, b, = Is(u—1), ¢; = }, a, = —1r. Now

apply theorem 28; then, if Z(A) > -3,

f xtexp {i(o +v)# (x 4+ 1)t —lox} dx = exp {i(c + V)'“}foo {22 + $(a +v)r a1} e oo dx + o (o).
0 0
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It follows that, if Ay + 1,

fw xto—3exp {i(a+v)# (x +1)% —iox} da
0
= exp {i(a+v)#—mi(Ag—2)} {(Ag—3)! a0 — (Ay— 2)! Jiot o (o + v)#} +0(a®*)  (90)

as a —+ co. The error estimate could, of course, be improved by using theorem 15; it would then
be o(a2#—3rote). Tt would also be possible to expand («+ v)# asymptotically but it is sometimes
found in practice that a formula will give better numerical results for the lower values of « if this
is not done.

An illustration of a kernel in S#4 is provided by the Bessel function J,(«x) (n a non-negative
integer), which obviously satisfies the conditions of definition 3 except possibly (14). The only
difficulty with (14) arises when x is large and then, by expressing J, in terms of the Hankel

functions through J,(x) = MHD(x) + HO(x)}
we see that (14) is satisfied with & =  and N = 0 (in fact we could take N = —} if it were not for

the restriction in the definition). One could consider in a similar way J,(cx)/(otx)”.
Start with the known result (Watson 1944)

® In+Lp—1)! (2o)™
fo ety eear = ;!QGIH?” i) e~ Fi(3n—3p+1;n+1; a2/4e?)  (91)

when ¢ > 0 and Z(u) > —n. Since

Filasesx) = ((2: Biemx“—c{l +0(x 1)}

as x —> o0, corollary 114 gives

(3p+En—1)1 261
(30— p) e

J AT (92)

0

subject to @ > 0, Z(u) > —n. The range of validity of this formula can be extended by employing

(85) and theorem 8. Thus . 1 e

f 1 (at) dt = ~a f atr I, (at) di.
0

0

The recurrence formula zJ, (z) = nJ, —zJ,_, leads to

f e d = f T (ad) de

and, if (92) is employed to evaluate the right-hand side, (92) is recovered but with the restriction
Z(p) > —n—2 so long as u is not —n. Proceeding in this way we show that (92) is true for all
complex u except —n, —n—2,.... Equation (92) is well known in the conventlonal theory of
Bessel functions but is there subject to the restriction —n < Z(u) < 3.

When g = —n, —n—2, ... formulae analogous to (87) can be derlved from

(p+in—1)t2e"2
(3n—gp)! o

[ty e = (Wt =)+ Y (dn— 1) — 2In Ja),
0

which may be proved without difficulty.
53
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38 D. S. JONES

By lemma 12, J, (eex) is of limited growth. It therefore follows from theorem 26 that, if K has
the properties described in that theorem and has no critical point other than the origin (and is
bounded by a polynomial at infinity),

o m—1 (1 — — 1)V 25+ A0—
f xMK (x) J,(ax)dx = ¥ (bt Ao =g tn= L} 200 e

0 2 (B(n—s—Ag+g— 1)} sToerho—ati

KO(0) +o(ca-1-m=Aot¢) (93)

as oo —>+00, wheree > 0,0 < A, < 1 and ¢is a positive integer with ¢ < m+ 1. If A, = 1, (93) may
have to be modified in a similar way to (89).
In contrast the application of theorem 27 gives, if A, + 1,

f * (x— 1) A5 H(x — 1) J, (o) dx

0
S—1 (¢ _ . —S)!
= > (%G/}___:\VS’;)‘ {/z{s)(a) eietinils—2p—S+1) | /ng) () e—ia—%ﬂi(s—/lg—S+1)} + 0(1) (94)
s=0 . )

as o —> + 00, where hy(ot) = $H{P (o) €712, hy(a) = $HEP () ele,

By combining (93) and (94) one can obtain asymptotic formulae for integrals such as

fol (1 —x)~% J,(ax) du.

In this connexion theorem 29 can sometimes be helpful.

Another function which is in S5 is e=*® (lemma 1). It is evident from theorem 28 that the
dominant contribution to the asymptotic behaviour will come from the origin, any other critical
point providing terms which are exponentially small. Expansions such as (71) should then enable
the asymptotic behaviour to be expressed in terms of Laplace transforms of relatively simple
generalized functions.

17. AN EXAMPLE OF INVERSION

As an illustration of the inversion theorem consider the Hankel transform. In order to verify
(45) it is necessary to consider

f: youd, (ay) f: Vo (%) I, (ox) dx dax.

The inner integral is a good function of « and so the integral with respect to « converges
absolutely. It may therefore be calculated as ‘

lim | e*“*yoaJ, (ay) f 00y+(x) Jp(ax) dxda.
0

e—>+04J 0

The order of integration can be interchanged in this integral and, since

J “ e~ o, (ay) J,(ax) da = lI (x—Z) e~(@+y?)de

0 2¢ ™"\ 2
. i N XYY rry®e
(Watson 1944), we obtain 5 fo y+(x) I, (EE) e—@+yDie (.
N R o W T Y e ¥
Also 26‘[() 1, (26) e~ @Hy/te dy 901 © Ve Iy =
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(Watson 1944). Hence the value of our integral is

Y A7 () — MY\ e—@rumte Ty . 286 U
26.[0 {7 (x) Y (y)}ln (26)6 * dx+26%7 (y) e I%n 3]

If y & 0, the asymptotic formula for the modified Bessel function makes the last term tend to
y*+(y) as e 0. If y = 0 the last term is zero (in fact, even if y = €%, the last term tends to zero as
¢ — 0 because of the presence of y*(y)). It is therefore legitimate to take the limit of the last term
as y*(y) when e— 0. With regard to the term containing the integral it is zero when y is zero.
If y is not zero split the interval of integration into the two portions (0, (¢/y)%) and ((e/y)?, ).

Now
Yy [” ) Y\ a—@2tyyte
A ORI AR s

A + P o
<2€(sup|y b " )§|x y|( ) e dx
< (o)t Gup D) [ et

y~i-ylet
= O(e?)

and

Y XY\ Pyt
2ef0 ) —vr (i |35,) dx

y 0 [ Y\"™ /0o
< L Gsuply+) [l (32) et a

1
< ( 216 ) bntd (sup |y+']) e~ temi—un

-0
as ¢ > 0. Consequently, it has been shown that
[ vrton) [ 7+6) (o) deda = 72(9)
0 0

ony > 0.
The theory developed above may now be applied. For example, since

[3—m Jn(ocx)] =0 (m<n or m-—nodd)
oxm™ z=0

m! (—)¥m—m (Ja)m
=(%m—%n)'(—m+%)l (m =n+2r)

(46) gives yf artar+l] (ay)da =0
0

ony > 0, forr = 0,1, .... This is consistent with (92).
There is also the general result

gl0) = Lim [ oy (a) He) [ a) oo (o) avdo

on y > 0, as a consequence of (49). The factor e=#* can, of course, be replaced by a factor with
similar properties, e.g. e7#%%,
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40 D. S. JONES

The same technique that was used to prove the validity of (92) for all values of u except
—n, —n—2, ... may also be employed to establish (91) for the same values of #. Accordingly,
ony >0,
© Gntip—1)! (o)

1“~1 = 1
y Lim P

e—>+04J 0

2
e g, () (= e 134 1 ) da

if w# —n, —n—2,.... This should be compared with a related result which can be deduced

from (92), namely 11 | op—l feo
pez (Bt ap—1)12 f xt =T, (ox) dx
/ =gt Jo

ifp+n+2,n+4,...

APPENDIX A

This appendix is concerned with the properties of certain singular integrals when a weak
function is present in the integrand. Some discussion of such integrals has been given elsewhere
(Jones 1966¢) but, for convenience, the main results that are needed will be summarized briefly
below.

Only integrals over a finite interval will be considered. Since weak functions and generalized
functions are the same on a finite interval the results derived are equally applicable to integrals
of generalized functions.

Let ¥ be a complex-valued function such that 3 and its first ( —1) ordinary derivatives are
continuous on the finite interval [a, §]. Let y® e L,(a, b),i.e. y®is absolutely integrable over (a, b).

There are extensions of y onto a larger interval, which have the same properties. For example,
construct a polynomial P,_; of degree r—1 on x < a such that P& = ¢® (s = 0,1, ...,r—1) at
¥ = a. Multiply F,_, by a fine function which is unity for ¢ —{e < x < b +2e (¢ > 0) and identi-
cally zero for x < a —Ze. Then, if this product is called ¥ on x < @ an extension has been provided
which has the desired properties and also vanishes identically for ¥ < a—e. Clearly, a similar
extension can be supplied on x > 5.

The space of functions with the properties of i/, extended so as to vanish outside (¢ — e, b + }¢),
will be denoted by L7(a, b).

Let w be a weak function which is zero on ¥ < ¢ and on x > 5. Such a weak function can be
expressed, on ¢ — e < x < b+ e, as w = f@ for some finite 7, where fis continucus and vanishes
outside (a—e, b+¢). The space of all weak functions which can be represented in this way for
a given r will be denoted by W"(a, b). Obviously, if w e W"(a, b) then w e Wr+i(a, b).

Ifwe Wr(a,b), then f® = 0 on a —4e < x < aso that f must be a polynomial of degree r —1 on
this interval.

Ifwe W7(a,b) and Y e L7(a, b) define

aQ

[wtwiyax = (= [ ) pota) v (A1

Since the integrand involves only ordinary functions, f being continuous and ¥® integrable, the
integral on the right is one in the conventional sense.
It should be remarked that this definition is, in fact, independent of ¢. For, on account of the
properties of ¢,
a
—~€

S 905) dx = [f) 9Ty = [ 1) w90
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by an integration by parts. The value of the first term is f(a) ¥*—Y(a) because /*~V vanishes at
the lower limit and f is a polynomial of degree (r—1) on the interval under consideration.
Repeating the process r— 1 times we obtain

[0 76 90w di = LA = 90t (P e (A 2)

For ¢, ¥, ..., ¥y Dit does not matter whether we put x = a — 0 or ¥ = a since they are continuous
across x = a; however, it can be significant for f because we can be sure of finite values for the
derivatives only on x < a. Similar considerations apply to the interval (b, b +¢€) and so (A 1) does
not depend upon ¢, nor the values of i outside [a, 4].

As an illustration, suppose that w = {(x —a) H(x —a) ¢(x)}" where ¢ is a fine function which is
unity for a—4e < x < b+4¢ and zero for x < a—e¢, x > b+e. Then we W?2(a,b) and, indeed,
w = 8(x—a). After two integration by parts, (A1) gives

[Lue) v s = g@ wia + [ g+ ey ¢y e
- $(@) ()

since ¢’, ¢" are zero for a < x < b+ }e and ¥ is identically zero for x > & +}e. Since ¢(a) =1
we have

[Lots-a)pw ax = i) (A3)

when ¢ € L?(a, b). More generally

[} o =a) pia) e = (=) (A4
a
when i € L™+2(a, b). Actually the conditions on ¥ can be lightened by observing that (A 1) could
still be used if fe L;(a, b) so long as @ is continuous. There would be no alteration to (A 2), but
now (A 4) would be valid provided that 1™+ were continuous. Still less restrictiction would be
imposed if a Stieltjes integral were used to define the left-hand side of (A 3).

Assume that w,, € W"(a,b), we W(a,b) so that w,, =f%, w = f®. Suppose that lim f,, = f
uniformly. Then, if ¢ L"(a, b), e

tim [ ) () de = T (=) [T £ (0 990 da
= ([ ) gt a

since the convergence is uniform. Hence we have proved
Tureorem A L. If w, = f% e W(a, b), if w = f© e W(a, b) and im f,, = f uniformly then
nm—>0

b

lim bwm(x) Yr(x) dx =f w(x) Yr(x) dx (A 5)

when e L (a, b).

On the other hand, iflim w,, = w in the weak sense there is 7; such that w,,, = f&, w = f®) and
mMm—>0
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42 D. S. JONES

Jfm—f uniformly. Hence, provided that yr € L (a, b), (A 5) will be valid. Consequently, there has
been demonstrated

CoroLLARY A 1. If w,, and w are zero for x < a and x > b (a and b finite), and if im w,, = w
in the weak sense then b b "

lim | w,(x)¥(x)dx = f w(x) Y(x) dx

m—>0 a a

provided that 1 € L"(a, b) for sufficiently large r.

ArrENDIX B

In this appendix we show that the sequences {y, } define the space K, of generalized function
which are zero for x < 0. (

First, if {y;} is a regular sequence, each vy, is identically zero for x < 0 and so defines a
generalized function which is zero for x < 0, i.e. ge K.

Conversely, if ge K, g = f® where fe K, (Jones 19665). Since f® = 0 for x < 0, f must be
a polynomial on x < 0. If this polynomial is subtracted from fthe representation of g is unaltered
but now f1is zero for ¥ < 0. Hence, when g € K, we can write g = f@ where fe K; and is zero for
x < 0.

Suppose now that f'e K; and is zero for x < 1. Then the sequence

[} 70 =y ai),
)

px) = F———
f e-1a-) g
-1

=0 (|x| > 1),

where (| < 1)

is a sequence of good functions which defines f (see Jones 1966 ) and moreover each of the good
functions vanishes identically for ¥ < 0 because of the properties of p. Hence such an f1is certainly
defined by a sequence of the type {y;}.

It remains to discuss the case of an integrable f which is zero for x < 0 and for x > 1. Consider

#l) [ SO plnte—0)pn s

where dp(x) =e Mz (x > 0)
=0 (x < 0).

Obviously this is a fine function of ¥ which vanishes identically for ¥ < 0 and so can be regarded
as a ;. Also, if y is any good function,

[7 v suw [ roptue-sndias = [7 vt [ £ ptnte-a)ncras

— 0

7 v a0 -1 [ 70 pt-Dnarax. (B 1)

The first term on the right-hand side tends to

[, 7 vy ax
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as n—00. As regards the second term the change of variable x = ¢ —y/n leads to

R

Now since ¢,, never exceeds unity

12507 (=8) oo (=8) o <o =8

0
1/nt
Lol 4

< 2B

where B is an upper bound for y(x) in, say, (—2,2). As n— o0 the last term tends to zero by
a well-known property of integrable functions.
Also, when ¢t > 1/n% and n > 1, ¢ > y/n since y does not exceed unity. Therefore

_g 4l —1 _ l 1 1
¢"(t n) 1|_|6Xp(mf~y) 1,<nt—y<n%—1'

0 e o < o <E

1/nt n

Hence

as 7> 00.
Consequently, the second term on the right-hand side of (B 1) tends to zero as #n —co and

[ v a0 [ roptnte—smpnaras [ o) v .

Thus it has been shown that, when fe K; and is zero for x < 0, there is a regular sequence
{y+} defining f. Since the sequence {y;;®} is regular and defines ™ we see that, because y;} ™
vanishes identically for x < 0, any g € K, can be defined by a regular sequence of good functions
which are zero for x < 0.
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